
 1

Computer-Aided Identification of System Vulnerabilities 
and Safeguards during Conceptual Design1,2 

 
                Jane T. Malin          David R. Throop    Land Fleming     Luis Flores 
   NASA Johnson Space Center     The Boeing Company     Hernandez Engineering     Lockheed Martin Space Operations 
           2101 NASA Road 1           2100 Space Park Drive     17625 El Camino Real            2400 NASA Road 1 
           Houston, TX 77058              Houston, TX 77058          Houston, TX 77058           Houston, TX 77058 
  281 483-2046       281 460-8415      281 483-2055   281 333-6423 
        jane.t.malin@nasa.gov    david.r.throop@boeing.com  land.d.fleming1@jsc.nasa.gov      luis.flores@lmco.com  
 
 

                                                           
1 0-7803-8155-6/04/$17.00©2004 IEEE 
2 IEEEAC paper #1181 Version 3. 

Abstract—This paper presents an approach to helping 
engineers to begin to address safety risks and to capture 
information during conceptual design, for use in early 
hazard analysis. Complex system accidents are hard to 
understand when they happen and hard to identify before 
they happen. Our goal is to aid early identification of this 
type of potential accident. We describe progress in 
developing a prototype Hazard Identification Tool to help 
engineers capture design features of systems and 
components. We describe terminology for classifying and 
describing system functions, problems, vulnerabilities and 
safeguards. This terminology can be applied to hardware, 
software and human factors. Conceptual design information 
is mapped to a library of component models, to support 
generation and simulation of system accident scenarios. We 
describe a strategy for identifying potential system accident 
scenarios, based on an analysis of types of sequences of 
events in system accidents. We describe tools for scripting 
scenarios and mapping to a hybrid simulator. The generic 
component library of the simulator is used to construct 
component-connection models whose behavior can include 
a broad variety of types of performance problems and 
hazards. We illustrate the strategy with a design case with a 
biological water processing system. 
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1. INTRODUCTION 

In recent times, there has been increasing interest in 
predicting and preventing system accidents, as startling 
system accident cases have accumulated [19]. Accidents of 

this type include an Osprey helicopter crash [9], Therac-25 
failures [11] and the ValueJet 592 crash [10]. Complex 
system accidents are hard to understand when they happen 
and hard to identify before they happen.  
 
A hardware designer is usually aware of the significant 
consequences of planned operations for the anticipated 
states of the system. It is more difficult to anticipate all 
reasonable sequences of operations to which the system 
might be subjected, or to anticipate all the off-nominal 
system states in which a planned operational sequence is 
inappropriate. Likewise, designers of operational procedures 
or control software and human operators of the implemented 
system may be far removed from the details of physical 
component interactions within the system. It is difficult to 
anticipate the full consequences of unplanned operations in 
response to component failures or consequences of normal 
operational procedures conducted in unusual circumstances.  
 
Our goal is to aid early identification of potential accidents.  
System accidents are brought about by complex unexpected 
interactions between failures in systems during operations, 
and by inappropriate responses to developing accidents. In 
system accidents, complex system and process failures 
typically interact with failures of controls, safety systems, 
software and human operators. Analysis is needed of 
propagation of system threats in operations, due to 
interactions among subsystems and with resources (power, 
thermal, data). Analysis is also needed of safeguard 
subsystems for managing these threats, including controls, 
safety systems, software and human operations. 
 
We are developing an approach to help engineers identify 
hazards, threats, counteractions and safeguards during 
conceptual design. Our goal is to use this information for 
graph analysis and simulation, for early hazard analysis that 
considers operations, with some features of operating and 
support hazard analysis (O&SHA) and hazard and 
operability analysis (HAZOP) [4].  
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The prototype Hazard Identification Tool (HIT) helps an 
engineer to capture design information top-down from the 
system level, with emphasis on system functions and 
structure. HIT provides vocabularies and library-based help 
for identifying and analyzing system functions, threats and 
safeguards. HIT supports developing component-connection 
models of systems, for model-based hazard analysis 
(MBHA). HIT libraries include component models that can 
be mapped to a simulation tool. By mapping selected HIT 
data to models in the simulation tool, it is possible to 
simulate accident event propagation during operations. The 
approach uses a hybrid modeling and simulation tool, which 
includes a library of generic component behavior models, 
with a broad variety of types of performance problems and 
hazards. HIT will also help engineers identify, develop and 
script candidate accident scenarios for simulation, based on 
types of sequences of events in system accidents. This paper 
provides a progress report on development of these concepts 
and prototypes. 
 

2. HAZARD ANALYSIS USAGE CONCEPT 
Figure 1 show as usage concept for HIT and the simulation. 
Using HIT and its supporting terminology and libraries, the 
engineer identifies system information that is relevant to 
operations and hazards. HIT data is used for simulation, and 
to generate reports for analysis by engineers specializing in 
software, safety and human factors.  
 
 

 

 

 

 

 

 

 

 

 

Figure 1 - MBHA System Usage Concept 

 

HIT Usage Concept 

HIT provides knowledge acquisition forms and supports 
selection of types of components and entities, functions and 
problems from libraries. Use of these libraries helps the 
engineer consider potential problems and safeguards that are 
associated with types of functions and entities. The 
following tasks illustrate step-by-step use of HIT. 
 
Import system data from conceptual design tool 
Optionally, import some system data from a conceptual 
design tool, such as DDP [2] or CUP [1]: goals/functions, 

components/subsystems, and their structure of connections. 
While CAD-oriented tools such as CUP focus on low-level 
components and shapes, HIT, like DDP, emphasizes 
system-wide functions and interfaces, from the top down. 
 
Specify system-level information 
1. List system components/parts, interfaced systems and 

supporting resources (Some component-level 
information could be specified during this step.)   

• Import from a design tool or create instances 
• Classify components/parts with component types 

from library (with information used for simulation) 
2. List major system operating modes, operations and 

operational phases 
3. Specify system goals hierarchically (Identify related 

goals, super-goals, sub-goals 
• Functional goals 
• Counteraction goals, to manage threats to or within 

system, from system, or passing through system 
4. Define goals, using the Function class – both functions 

and threat counteractions  
• Name and classify function verb and objects, using 

the function and entity type hierarchies  
• For counteraction, classify as safeguard type: 

Isolate/protect, monitor/indicate, control/command, 
compensate/apply redundancy, or recover/maintain 

• Identify agents, participants and contributors 
(components/parts, materials, interfaces) 

• Identify conditions for activation and performance 
• Identify and evaluate function effects (importance, 

effectiveness, potential problems) 
o For performance, provide a model 

(expressions, equations or tables) 
o For problems, define using the Problem 

class structure  
 
Graphically specify system structure 
Define system structure: Connect components and 
interfaced systems to define relationships. (This supports 
generation of an interface file that is used to translate the 
connection information into a simulation model.) 
 
Specify component level information  
Component instances were identified and classified in the 
system-level specification. Component classes in the library 
include typical functions, potential problems and 
performance models.  

• Some components were identified as contributors to 
specific system goals 

• Some components were identified as involved in 
specific system threats (hazards and vulnerabilities) 

• Specify further information for each component, 
same as for system (parts, operating modes, 
goals/functions) 

 
Script nominal and accident scenarios 
Develop scenarios and scripts to guide simulations focused 
on system accidents.  
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• Configure elements of potential accident scripts for 
operations, based on graph analysis and identified 
functions, problems and safeguards. Select paths and 
event sequences that include hazards and safeguards.  

 
Biological Water Processor System Example 

The HIT prototype is implemented in the open-source 
Protégé knowledge acquisition tool [18]; a system that 
provides intuitive information entry forms for knowledge 
acquisition. We have enhanced the basic Protégé tool with 
automatic data propagation and a tool for specifying 
simulation scripts. Because implementation follows design, 
some details of the example case have not caught up with 
the design described in this paper. 

 
Figure 2 shows use of HIT to capture system components 
and structure for a biological water processor (BWP). The 
BWP is a subsystem of a Water Recovery System that was 
designed, built and tested at NASA Johnson Space Center 
[3]. The BWP takes in raw gray water and reduces the 
organic carbons and the ammonium. This water is further 
processed in downstream systems that include a Reverse 
Osmosis (RO) unit, a Post Processing Subsystem and an Air 
Evaporation Subsystem for recycling water from RO brine. 
The BWP consists of a continuous loop with two biological 
processors and a Gas Liquid Separator (GLS) in a single 
path. A recycle pump keeps the flow through the system at 
the desired level.   

 

 
 

Figure 2 - Biological Water Processor Components and Connections 
 
The Packed Bed Biological Water Processor (PBB) is a tank 
packed with ceramic saddles that support the growth of 
anaerobic microorganisms. These microorganisms use 
nitrates and nitrites provided by the nitrification process, 
next in the loop, to reduce the organic carbon in the 
wastewater (WW). The other biological processor, the 
Nitrifier, consists of four pairs of polypropylene tubes that 
contain aerobic microorganisms. These microorganisms 
convert the WW ammonium to nitrates and nitrites. Both air 
and water are pumped into the Nitrifier tubes. The GLS 
separates the Nitrifier effluent gases and liquids, and vents 
the gases. In steady state mode, WW is fed back to the PBB 
while the stream is tapped at the GLS to feed the RO. About 

95% of the liquid is recycled back into the PBB. The inflow 
and the outflow are balanced to maintain a constant flow 
through the two biological processors. 
 
A new design can be quickly outlined with the Protégé 
diagram capability. The system presents a list of 
components that may be dragged from the vertical palette 
into a canvas to create an instance. Dragging the mouse 
pointer from one component to another in the graph 
createsconnections. Figure 2 displays the BWP graph, the 
palette, and part of the hierarchical component library 
display in Protégé. HIT supports development of 
submodels, called “inner models”. The Nitrifier is made up 
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of four paired nitrifier tubes with common structure. Figure 
3 displays a submodel of a nitrifier pair. 
 

 
 

Figure 3 - Inner model of Nitrifier Pair  
 
Figure 4 shows a graphical interface that is being developed 
for specifying system characteristics for the BWP. Windows 

open on the left illustrate forms for specifying attributes for 
a function and for a vulnerability (threat), with its 
safeguards. These windows contain selection boxes for 
mapping system attributes into types in the appropriate class 
hierarchies in the ontology. 
 

3. FUNCTION AND PROBLEM ONTOLOGIES 
We are developing ontologies for capturing system design 
information. Ontologies are knowledge structures with 
standard terminology. The ontologies provide hierarchies of 
types/classes with default information to define the classes. 
The type hierarchies and class structures provide 
standardized terminology and a standard framework for 
information capture in early design. 

  

 
 

Figure 4 - Specifying Water System Attributes, with Functions and Vulnerabilities 
 

Goals Describe Functions, Vulnerabilities and Safeguards 

Specifying counteraction goals helps engineers identify 
safeguards, hazards and vulnerabilities. Counteractions 
(safeguards or mitigations) are designed to protect the 
system against vulnerabilities, which are unacceptable 
system level weaknesses or occurrences. The three types of 
counteraction goals clarify the distinctions between 
mishaps, hazards and threat propagation: 

1. Counteract Mishap or Functional Failure: manage 
threat to or within vulnerable entity 

2. Counteract Hazard: manage threat from entity 
3. Counteract Threat propagation: manage threat 

passing through entity 
Functions and safeguards, mishaps and hazards can be 
classified and described by using the ontologies. The 
Function class (summarized in the system-level 
specification in Section 2) provides a structure for defining 
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both functions and safeguards. The Problem class has an 
attribute structure that closely resembles the function class, 
defining conditions and effects for problem occurrence, and 
evaluation of their prevalence and severity. Designers 
consider hazards and off-nominal behaviors, and both 
standard and unusual problems.  
 
The function and entity hierarchies work together to classify 
verb-object function phrases, which are used in function 
analysis during system design. The current type hierarchies 
for functions and entities are shown in Table 1 and Table 2.  
 
Developing the Ontologies 

The ontologies and libraries for HIT include interrelated 
hierarchies of types of functions, entities, problems and 
safeguards. To support use by several specialty disciplines 
through the life cycle, the ontologies cover not only 
equipment and materials but also control and operations by 

software and humans. The terminologies are drawn from 
diverse sources. The National Institute of Standards and 
Technology has contributed to development of a unified 
function ontology, and this ontology of functions and 
“flows” has served as starting point for our work on 
functions and entities [5]. We have also used concepts from 
Modarres [16] and Kitamura and Mizoguchi [8] and 
Norman [17]. The starting point for our problem ontology 
was HAZOP terminology [4,21]. Work by Hollnagel [6] 
served as a starting point for our safeguard representation. 
When possible, we have converted specialty terms into 
terminology that would be understandable to a design 
engineer. 
 
These ontologies have been refined and mapped to the space 
domain by parsing and analyzing International Space 
Station (ISS) documents. One source is the ISS Reliability 
Block Diagrams (RBDs). 

 
Table 1. Function/Capability Type Hierarchy 

 
 

Level 1 Level 2 Levels 3, 4 (:) and 5 (--) Example Mappings 
Process Convert   transform, process, condition 

  Increase or Decrease Produce/increase; Reduce/decrease; Use 
generate, create; remove;
consume 

  Combine or Separate Combine; Separate mix, blend; extract, divide, remove
  Damage Damage; Give way/destabilize destroy, break; collapse, yield 
Place Hold Store; Carry; Support/Stabilize; Secure contain; channel; reinforce; restrain
  Shift Send: Provision, Export; Release; Free provide; disperse; spill; disengage 
    Receive/import/collect; Shift in place; Transfer capture; circulate; move, transmit 

  Arrange Isolate; Expose 
shield, block; unlock, provide
access 

    Position; Displace place, align, orient; dislocate, slip 
    Assemble/order/set up; Disassemble install, configure; unpack, unstow 
    Connect; Disconnect attach, fasten; demate, undock 
    Cover; Uncover coat, line; strip, remove 
Serve/support Provide (service)   support, accommodate, supply 
 (object can be function) Withhold (service)   retain, hold back, withhold 
  Require (service)   need, require, demand 
 Forego (service)  waive, give up, relinquish 
Energize/drive Propel/pressurize Increase force; Reduce force pressurize, pump; decompress 
 (object can be function) Heat Increase heat; Reduce heat warm; cool, refrigerate 
  Power Increase power; Reduce power energize, charge; discharge 
  Illuminate/radiate Increase radiation; Reduce radiation light, irradiate; dim, darken 
Control/manage/perform Inform/decide Communicate: Indicate -- Conceal; Interact -- Intercept show; hide; request; block 

  (object can be function)   
Process or Ignore: Monitor; Understand; Determine;
Ignore/mistake sense; interpret; decide; dismiss 

 Control/maintain (state) Achieve; Maintain; Avoid; Recover attain; preserve; prevent; correct 
  Direct (act on) Manage; Assign; Regulate/guide/modulate supervise; designate; adjust 

  Command: Select; Enable—Disable; Start--Stop 
switch; allow, inhibit; actuate,
cancel 

   Perform/act/respond Execute; Slip/Err operate; mistake, omit 
  Coordinate Correlate or Conflict: Correlate; Conflict synchronize; clash, compete 
    Assist or Interfere: Assist; Interfere help; interrupt 
    Reward or Punish: Reward; Punish motivate; discourage 
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The RBDs contain a directed graph of functions and entities, 
from high-level functions to individual pieces of equipment. 
Each functional node has a description, which is usually an 
imperative sentence – e.g. “transmit voice communication” 
or “introduce O2”. Another source is the ISS Flight and 
System data books [7] that contain a large set of procedures. 
Many of the procedure titles are imperative sentences, e.g. 
“apply electrical power to specified load” or “configure p4 
power module for proximity operations”. Using an English-
language parsing program, the descriptions and titles were 
broken into noun and verb phrases. We generated lists of 
nouns and verbs that were not mapped to types in the 
ontology. We generated charts showing the parent/child 
relationships of the hierarchy, and counted the number of 
times each type appeared, along with a listing of examples 
and counts of the associated entities. This showed us which 
portions of the hierarchies were most heavily used. This 
information was used to selectively expand the word 
mappings for types, and to reorganize and expand the 
coverage of the type hierarchies. 
 
Function Verb Type Hierarchy  

Parts of this function verb hierarchy can be two to five 
levels deep. Example words that map to the deepest levels 
are shown in the right hand column. 

 
The primary function types Process or Place entities. Three 
other Level 1 types, Serve/support, Energize/drive and 
Control/manage/perform, can be meta-functions, because 
they can act on function entities. The type hierarchy is 
designed to include both positive and negative versions of 
capabilities where it is appropriate (e.g., collapse, dislocate, 
hide, omit, compete). We expect these contrasts to be useful 
in identifying some types of functional failures. The 
Control/manage/perform ontology is designed to cover 
hardware, software, human and organizational domains.  
 

Entity Type Hierarchy  

Entities can serve as objects in function phrases. Parts of 
this hierarchy can be two to four levels deep. Example 
words that map to the deepest levels are shown in the right 
hand column. The functional type hierarchy influenced the 
definition of types of equipment entities. A library of 
specific instances such as materials can include hazard 
attributes, such as Material Safety Data Sheet information. 
We are exploring the interrelationships between the function 
and entity type hierarchies.  

 
 

Table 2. Entity Type Hierarchy 

 
 

 

 

 

 

Level 1 Level 2 Levels 3 and 4 (:) Example word mappings 
Objects Life forms   microbe, person, plant 
  Physical objects Systems as units hardware, payload, kit 
    Parts accessory, plate, shaft 
    Equipment:   
    :Processors filter, reactor, extinguisher 
    :Storage/carriers bottle, platform, wire 
    :Tools/arrangers rope, clamp, gripper, wrench 
    :Control Equipment sensor, marker, switch 
    :Energy Equipment pump, radiator, battery, thruster 
  Material units/flows   oxygen, ammonia, moisture 

 Mixtures/collections   air, gray water, trash, oil 
  Object structures   assembly, array 
Locations/places     module, zone, path, worksite 
Information/signals Information units/flows   number, pixel, setpoint 
  Information groups   limits, defaults, band, sample 
  Information structures   vector, software, procedure 
Energy/power     heat, force, electricity, light 
States Variables/parameters   rate, pressure, level, duration 
  Events/states   bump, exposure, arrival 
  Behaviors/performances   growth, discharge 
Functions Services/capabilities   communication, access, handling 
  Demands   load, requirement, need 
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Problem Type Hierarchy 

A designer can use the problem type hierarchy to consider 
and classify threats, vulnerabilities and failure modes. The 
current type hierarchy for problems is shown in Table 3. 
This hierarchy can be three to four levels deep. Example 
words that map to the deepest levels are shown in the right 
hand column.  
 

The two main types of problems are Conditions or causes 
(which can be used as model input in accident scenarios), 
and Results or effects (which can be produced in accident 
event sequences as model output). The Condition problem 
types include both hazardous exposures and deviations from 
conditions needed for performance of functions. The Result 
types include both state consequences and problems with 
performing functions.  
 

Table 3. Problem Type Hierarchy 

 

4. IDENTIFYING SYSTEM ACCIDENTS 
We are developing a strategy for finding challenging system 
accident sequences. It will be based on graph analysis of 
effects propagation, and features that are typical of system 
accidents. A typical system accident involves complex 
behavior that leads to misinterpretation, which then leads to 
damaging responses. 
  
In typical system accidents, a primary failure interacts 
unexpectedly with other system events, defeating a 
safeguard that was not designed (or maintained in readiness) 
to handle the complex version of the failure. Human 
operators, software and instrumentation are frequently 
implicated in the accident. Their tools and procedures of are 
not prepared to help identify or block the complex problem. 
 

 
Our analysis of system accidents has led to a three-phase 
theory of system accidents.  
1. Complexity surrounding failures 

– Combinations and synergistic effects: common 
causes, canceling failures, side effects, command 
combinations and timing 

– Interactions in dynamic complex trajectories or 
histories: causes and effects that are distant in time  
(e.g., interacting systems, stored potentials), or 
compensating mechanisms 

2. Misinformation and misinterpretation, due to complexity 
– Missing information, either concealed or ignored 

(possibly due to overload) 
– Wrong information, due to a misleading situation or 

misinterpretation of information 
3. Damaging response, from complexity and misinformation 

– Misapplied or not applied, due to ‘silently’ violated 
assumptions (operational, coordination), failure to 

Level 1 Level 2 Levels 3 and 4 (:) Example word mappings 
Condition/cause Exposure/deprivation Electrical/electromagnetic stress load, shock 
(can lead to bad result) (too much, too little) Thermal stress load, shock 
    Radiation stress load, shock 
    Acoustic stress load, shock 
    Mechanical/vacuum/microgravity load, abrasion, impact  
    Chemical/biological load, shock, toxic accumulation  
    Signal/information overload, shock 
  Deviation from required Equipment property vibrating, too small, misaligned 
  (too much, too little, wrong) Materials property inadequate, excess, wrong temp. 
    Energizing/driving property   
    :Pressure, Thermal, Power, Radiation inadequate, excess 
    Management/controls property   
    :Communication missing, obscured 
    :Processing inadequate, misinterpretation 
    :Action/operation/response wrong, delayed 
    :Coordination conflicting, unsynchronized 
Result/effect Problem with State Equipment function or structure block, deform, leak, corrode 
  (damage, failure, degradation) Materials noise, contamination, conductivity 
    Life forms injury, infection, aging 
    Environment/locations fire, explosion 
    Energy/drives outage, surge 
    Information erasure, corruption 
  Problem performing function Error (act when inappropriate)  unauthorized, improper, wrong 
   Omission (when permitted/commanded) failed, missed, left out, skipped 
    Insufficiency (rate, time, quantity, quality) slow, too little, degraded 
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stop when not helping or shortsighted response to 
wrong priority 

– Applied but not available (deactivated or ‘silently’ 
unavailable due to failures of build, maintenance, 
configuration) 

 
We plan to construct accident scenarios by elaborating 
safeguard scenarios that the engineer identifies. A designer 
of hazard countermeasures can identify cases that test the 
safeguard. We plan to begin with scenarios that test the 
successful operation of a safeguard, then complicate them 
with types of complexity, misinterpretation and safeguard 
failures. Graph analysis will help identify combinations of 
failures and failed counteractions that could potentially 
result in a system accident. Selection of complicating factors 
can be influenced by prevalence and importance ratings for 
functions and threats, and by search backward in the model 
structure from mishaps. 
 

5. SIMULATING SYSTEM ACCIDENTS 
Simulation and Models for Analyzing System Accidents 

Simulations for early design should provide a quick look at 
what could happen in important operations. System 
accidents are characterized by propagation and combination 
of threats during system operation. Sequences of system 
events can be investigated in fast scenario-based simulation 
of operations. Scenarios should focus on interactions 
between functional behaviors of major subsystems, 
components and resources. Simulations should support 
investigating threat propagation that crosses system 
boundaries and connections, and even changes system 
connections or structure.  
 
Experience from past simulation projects [14] has shown 
that it is difficult for engineers to anticipate consequences of 
operations that change the state of fluid flows in a system. 
Unanticipated and counterintuitive consequences may be 
spatially remote from the component directly affected by 
such an operation. Potential system flows can be dependent 
on the historical context of the operation, so the 
consequences may be temporally as well as spatially remote. 
 
The behavior of components should be modeled in HIT as 
abstractly as possible, focusing on functions and functional 
failures. Structurally, systems should be represented as 
graphs. Models should be able to represent the types of 
safeguards and simulate the chains of events involved in 
system accidents: cascading failures, inappropriate system 
reconfigurations, and undesirable global or indirect effects. 
 
CONFIG hybrid device models  

The CONFIG hybrid simulator is well suited to meet these 
specialized needs. CONFIG is a modeling and simulation 
tool with reconfigurable models of complex systems. It is 
intended to support high-level analysis of the behavior of 
complex systems during operations, and is designed for 
exploration of cascading failure sequences. The simulation 

and modeling approach allows for model selection in 
simulation scripts, including failure insertion and selective 
fidelity adjustments. The approach to simulating flow 
permits qualitative capture of remote interactions between 
components that otherwise could go undetected in complex 
systems. It also permits analysis and simulation of 
distributions of static potentials that are dependent on the 
history of operations such as a sequence of valve openings 
and closures.  
 
CONFIG extends discrete event simulation with capabilities 
for approximate and qualitative modeling of continuous 
system behavior [12, 14]. The tool supports investigation of 
the sequencing of system events in fast scenario-based 
simulation of operations, and is well suited for analysis of 
hazards and effects of failure modes and fault tolerance.  
 
To evaluate operation concepts prior to implementation of 
actual control software, or to evaluate manual procedures 
that unfold over very long periods of time, procedures may 
be modeled as components of the larger system model in 
such a way that the procedure models and hardware 
component models interact synchronously. CONFIG 
capabilities for scripting and for modeling activities 
(control, procedures, schedules) can be used for early 
dynamic analysis of operational problems. In discrete event 
simulation, generation of events and time-advances can be 
random, supporting probabilistic analysis. CONFIG has 
been used primarily for deterministic analysis of specific 
state configurations and inputs, but can support probabilistic 
analysis. 
 
Discrete event simulation provides a framework for causal 
modeling of states and outcomes. The continuous time base 
of discrete event simulation [22] supports both event-
stepped time advances and discrete-time-step approaches to 
continuous simulation. In CONFIG, a discrete-time-step 
approach can be used to periodically update continuous 
variables in a component [20]. Discrete event models of 
systems are composed of coupled component models. In 
CONFIG, components models can simulate multiple 
behavior modes. Each mode has state equations that 
generate behavioral effects, and conditions that govern 
mode transitions. System behavior emerges from the 
coupled behavior of the components. In CONFIG, the 
model structure can be “recomposed” during a simulation as 
the direction and activation of the couplings changes. Parts 
of the model are activated or deactivated as operating modes 
of components change or closed off areas of the system are 
brought into the working system configuration.  
 
Simulations of biological water processing and air 
revitalization systems for spacecraft life support systems 
[15] requires representations of discrete events such as the 
opening of a valve and continuous changes. Continuous 
changes can include pressure changes in gas storage tanks as 
gas flows into or out of the tank. Gas pressures within a 
fluid container may be computed using either a linear 
(Eulerian) approximation or by projections of average rates 
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of change over a time step assuming exponential decay of 
the rate of pressure change. The exponential method is 
necessary when running simulations at high ratios of 
simulated to real time for systems in which time constants 
are large. The concentrations of the constituent chemicals in 
a fluid are updated by similar techniques.  
 
During the course of a simulation, the magnitudes of 
pressure sources and resistances change and the system may 
be reconfigured periodically by events such as the opening 
and closing of valves. In response to such events, the 
simulator updates flow rates and potential drops across 
affected model components using graph analysis and linear 
circuit analysis of the model configuration. Prior to running 
a simulation, the model is partitioned into clusters of 
components so that that recomputation of flows and 
potentials down to the component level are necessary only 
for those clusters affected by a given simulation event.  
 
In addition to the “dynamic” potentials associated with 
flows across resistances, the analysis determines static 
stresses (or static potentials) generated by flows at points 
where they are in contact with blockages such as closed 

valves [13]. Unlike other flow-related properties, static 
potentials cannot be represented by a set of state equations. 
The distribution of static potentials is dependent on the 
specific history of operations performed on a system. The 
distribution of static potentials in a system may be difficult 
for a human operator to understand and anticipate because it 
is dependent on the history of operations performed on the 
system (e.g., the order in which valve and pumps are 
operated). In a hydraulic system, an undesirable distribution 
of static potentials could produce effects such as the 
unintended opening of a relief valve, with catastrophic 
consequences.  
 
Generic Thermo-hydraulic Library 

A generic component library is being developed to support 
system accident simulation in thermo-hydraulic domains. 
This library serves as a pathfinder for characteristics of 
models that can be coordinated with HIT design 
information. It is used to construct component-connection 
models whose behavior can include a broad variety of types 
of performance problems and hazards. Figure 5 shows the 
component class hierarchy in the current library. 

 

 
 

Figure 5 - Generic Components in CONFIG Library 
 

Configurable Component Failures 

The components in the generic library can exhibit a wide 
variety of hazardous states and failures. These include 
immediate or delayed discrete changes to state, behavior 
mode or control regime. These changes can be triggered by 
script input, failures and problems in connected 
components. These factors can also trigger continuous 
degradations. Nontemporal algebraic relations can define 
how performance levels are affected by conditions, and 
degradation and regeneration of performance rates can be 
modeled. Stuck flags can control failures to operate or 
change upon input. Measures or input can be randomly 
varied. Resource providers have alternative methods for 
reacting to excessive demands from multiple loads. Reactors 
and separators models with multi-component mixtures can 

handle rapid fluid composition changes for introduction of 
contaminants, imbalances triggered by feed or flow reversal 
problems, and partial separation with migration of products 
to the wrong outflow. At the system simulation level, 
buildup and release of static stresses can be simulated and 
leaks can be specifiable additions to simulation scenarios. 
 
CONFIG helps the modeler to locally and selectively 
complicate a model for a specific simulation scenario. The 
modeler can change component parameters rather than 
revising behavior descriptions. For example, changing the 
default valve resistance from “infinity” to a finite number 
easily simulates leakages across closed valves. 
 
For simulation scenarios with leakage out of a specific 
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component, the user need only set a flag in that component. 
CONFIG then regenerates the computational network for 
flows with only the marginal increase in the complexity 
needed to simulate the leakage of interest.  
 
Mapping from HIT Specifications to Models  

The Hazard Identification Tool is being developed to 
provide users with a means of constructing system models 
based on a functional view of the components. HIT, 
however, is not intended for running simulations. In order to 
reveal how a system performs its intended function over 
time, simulations are useful. To support such simulations, a 
capability is being developed to automatically translate HIT 
models into models usable by CONFIG. CONFIG is 
primarily oriented toward simulating the physical behavior 
of components. The structure of the hierarchy of 
components types in the CONFIG generic library is 
influenced more by the physical structure and behavior of 
the components than by their functions. Further, the names 
of component types will not always be identical in CONFIG 
and HIT, even when they are sufficiently similar for the 

correspondence to be obvious to the user. Therefore, the 
correspondence between components selected in building a 
HIT model and the components available in a CONFIG 
library will not always be straightforward. To automate the 
translation process as much as possible, the translation 
utility contains tables explicitly mapping the 
correspondences between HIT and CONFIG component 
representations. Figure 6 shows part of the graphical 
interface for a running simulation of the biological water 
processor. 
 
Prior to running a simulation, values of device initialization 
parameters may be required in addition to those the user 
supplies in HIT. In order to accomplish this without 
requiring the HIT user to be familiar with the details of 
CONFIG device representations, each CONFIG component 
has an interactive dialog interface. This interface can be 
activated to elicit the necessary initialization data and guide 
the user in tailoring the generic models for the specific 
design. 

 

 
Figure 6 - Mapped CONFIG Model of BWP 

 
Scripts and Script Mapping 

The HIT model will provide a static view of the 
relationships of the functions of components in a system. A 
HIT scripting capability (Figure 7) is being developed for 
specifying changes over time to the functional status of 
model components during simulations. The HIT user enters 
information such as initial conditions and the set of events 
for a simulation run. The tool queries the HIT knowledge 
base for model structure and component device information. 
In the HIT script, events may be specified to occur at a 

given time or under a set of conditions. These conditions 
may represent either nominal operations or off-nominal 
induced failures. For example, a feed pump may supply 
water to a reservoir that must maintain a certain amount of 
water in order for the system to operate properly. To 
evaluate how effectively system safeguards respond to a 
pump failure, a script could specify that the pump will fail 
just before the reservoir becomes empty.  
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Figure 7 – Script Editor 

 
A utility has been implemented for translating HIT scripts 
into a CONFIG simulation script of discrete events. It is 
complementary to the model translation capability. A 
directive to change the functional status of a component, 
such as a valve opening to permit flow, is translated into a 
directive in the CONFIG script to set the value of a specific 
variable that will cause the CONFIG representation of the 
same valve to transition from the CLOSED mode to the 
OPEN mode. 
 

6. CONCLUSIONS 
We have made substantial progress in designing and 
prototyping elements of a system for aiding design 
engineers in model-based hazard analysis. Our initial work 
indicates that it is probably feasible to anticipate and 
analyze system accidents that would otherwise elude 
designers. It is also possible to develop terminology and 
tools that are consistent with the concerns of the designer, 
but that can also provide information to support analysis by 
specialists concerned with safety and risk. We will continue 
to refine, develop and integrate all these elements of a 
prototype system for model-based hazard analysis. 
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